Short-Range (0–12 h) PQPFs from Time-Lagged Multimodel Ensembles Using LAPS

Author:

Chang Hui-Ling1,Yuan Huiling2,Lin Pay-Liam3

Affiliation:

1. Central Weather Bureau, Taipei, and Department of Atmospheric Sciences, National Central University, Jhong-Li, Taiwan

2. School of Atmospheric Sciences, and Key Laboratory of Mesoscale Severe Weather, Ministry of Education, Nanjing University, Nanjing, Jiangsu, China, and NOAA/Earth System Research Laboratory, Boulder, Colorado

3. Department of Atmospheric Sciences, National Central University, Jhong-Li, Taiwan

Abstract

This study pioneers the development of short-range (0–12 h) probabilistic quantitative precipitation forecasts (PQPFs) in Taiwan and aims to produce the PQPFs from time-lagged multimodel ensembles using the Local Analysis and Prediction System (LAPS). By doing so, the critical uncertainties in prediction processes can be captured and conveyed to the users. Since LAPS adopts diabatic data assimilation, it is utilized to mitigate the “spinup” problem and produce more accurate precipitation forecasts during the early prediction stage (0–6 h). The LAPS ensemble prediction system (EPS) has a good spread–skill relationship and good discriminating ability. Therefore, though it is obviously wet biased, the forecast biases can be corrected to improve the skill of PQPFs through a linear regression (LR) calibration procedure. Sensitivity experiments for two important factors affecting calibration results are also conducted: the experiments on different training samples and the experiments on the accuracy of observation data. The first point reveals that the calibration results vary with training samples. Based on the statistical viewpoint, there should be enough samples for an effective calibration. Nevertheless, adopting more training samples does not necessarily produce better calibration results. It is essential to adopt training samples with similar forecast biases as validation samples to achieve better calibration results. The second factor indicates that as a result of the inconsistency of observation data accuracy in the sea and land areas, only separate calibration for these two areas can ensure better calibration results of the PQPFs.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3