Evaluating Data Assimilation Algorithms

Author:

Law K. J. H.1,Stuart A. M.1

Affiliation:

1. Warwick Mathematics Institute, University of Warwick, Coventry, United Kingdom

Abstract

Abstract Data assimilation leads naturally to a Bayesian formulation in which the posterior probability distribution of the system state, given all the observations on a time window of interest, plays a central conceptual role. The aim of this paper is to use this Bayesian posterior probability distribution as a gold standard against which to evaluate various commonly used data assimilation algorithms. A key aspect of geophysical data assimilation is the high dimensionality and limited predictability of the computational model. This paper examines the two-dimensional Navier–Stokes equations in a periodic geometry, which has these features and yet is tractable for explicit and accurate computation of the posterior distribution by state-of-the-art statistical sampling techniques. The commonly used algorithms that are evaluated, as quantified by the relative error in reproducing moments of the posterior, are four-dimensional variational data assimilation (4DVAR) and a variety of sequential filtering approximations based on three-dimensional variational data assimilation (3DVAR) and on extended and ensemble Kalman filters. The primary conclusions are that, under the assumption of a well-defined posterior probability distribution, (i) with appropriate parameter choices, approximate filters can perform well in reproducing the mean of the desired probability distribution, (ii) they do not perform as well in reproducing the covariance, and (iii) the error is compounded by the need to modify the covariance, in order to induce stability. Thus, filters can be a useful tool in predicting mean behavior but should be viewed with caution as predictors of uncertainty. These conclusions are intrinsic to the algorithms when assumptions underlying them are not valid and will not change if the model complexity is increased.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 87 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3