Affiliation:
1. National Center for Atmospheric Research,* Boulder, Colorado
2. Los Alamos National Laboratory, Los Alamos, New Mexico
Abstract
Abstract
The formulation of a fully compressible nonhydrostatic atmospheric model called the Model for Prediction Across Scales–Atmosphere (MPAS-A) is described. The solver is discretized using centroidal Voronoi meshes and a C-grid staggering of the prognostic variables, and it incorporates a split-explicit time-integration technique used in many existing nonhydrostatic meso- and cloud-scale models. MPAS can be applied to the globe, over limited areas of the globe, and on Cartesian planes. The Voronoi meshes are unstructured grids that permit variable horizontal resolution. These meshes allow for applications beyond uniform-resolution NWP and climate prediction, in particular allowing embedded high-resolution regions to be used for regional NWP and regional climate applications. The rationales for aspects of this formulation are discussed, and results from tests for nonhydrostatic flows on Cartesian planes and for large-scale flow on the sphere are presented. The results indicate that the solver is as accurate as existing nonhydrostatic solvers for nonhydrostatic-scale flows, and has accuracy comparable to existing global models using icosahedral (hexagonal) meshes for large-scale flows in idealized tests. Preliminary full-physics forecast results indicate that the solver formulation is robust and that the variable-resolution-mesh solutions are well resolved and exhibit no obvious problems in the mesh-transition zones.
Publisher
American Meteorological Society
Cited by
443 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献