Effect of Bathymetric Curvature on Gulf Stream Instability in the Vicinity of the Charleston Bump

Author:

Xie Lian1,Liu Xiaoming1,Pietrafesa Leonard J.2

Affiliation:

1. Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, North Carolina

2. College of Physical and Mathematical Sciences, North Carolina State University, Raleigh, North Carolina

Abstract

Abstract The effect of the isobathic curvature on the development and evolution of Gulf Stream frontal waves (meanders and eddies) in the vicinity of the Charleston Bump (a topographic rise on the upper slope off Charleston, South Carolina; referred to as CB hereinafter) is studied using the Hybrid-Coordinate Ocean Model (HYCOM). Baroclinic and barotropic energy transfers from the Gulf Stream to its meanders and eddies that appear as cold and warm anomalies are computed for four different cases. In case I, the curvature of the isobaths is artificially reduced and the CB is removed from the bathymetry. In this simulation, the simulated Gulf Stream meanders were barely noticeable in the study region. Energy transfer from the Gulf Stream to meanders and eddies was negligible. In case II, the curvature of the isobaths was the same as in case I, but a bump of the scale of the CB was added to the bathymetry. In this simulation, Gulf Stream meanders were amplified while passing over the CB. In case III, the CB was removed from the bathymetry as in case I, but the curvature of the isobaths was similar to the actual bathymetry, which was larger than that of cases I and II. In this simulation, large meanders were simulated, but the development of these meanders was not confined to the region of the CB. The total baroclinic and barotropic energy transfer rate in this case was an order of magnitude greater than in case II, suggesting that isobathic curvature was able to generate Gulf Stream meanders and eddies even without the presence of the CB. In case IV, actual bathymetry data, which contain both the CB and the isobathic curvature, were used. In this case, large-amplitude Gulf Stream meanders were simulated and there was also a tendency for the amplification of the meanders to be anchored downstream of the CB, consistent with observations. The results from this study suggest that the formation of the “Charleston Trough,” a Gulf Stream meander that appears as a low pressure or depressed water surface region downstream of the bump, is the result of the combined effect of the CB and the isobathic curvature in the region. The isobathic curvature plays a major role in enhancing the baroclinic and barotropic energy transfer rates, whereas the bump provided a localized mechanism to maximize the energy transfer rate downstream of the CB.

Publisher

American Meteorological Society

Subject

Oceanography

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3