The Response of Westerly Jets to Thermal Driving in a Primitive Equation Model

Author:

Son Seok-Woo1,Lee Sukyoung1

Affiliation:

1. Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania

Abstract

Abstract The structure of westerly jets in a statistically steady state is investigated with both dry and moist models on the sphere. The dry model is forced with an idealized radiative equilibrium temperature profile that consists of a global-scale base profile plus both localized tropical heating and high-latitude cooling. The tropical heating controls the intensity of the subtropical jet, while the high-latitude cooling modulates the meridional width of the extratropical baroclinic zone. The jet structure is analyzed with a large number of dry model runs in which the tropical heating and high-latitude cooling rates are systematically varied. This parameter study shows that, in a regime with weak tropical heating and strong high-latitude cooling, the polar-front jet separates itself from the subtropical jet, forming a double-jet state. In contrast, if the tropical heating rate is greater than a certain value, a strong single jet emerges, indicating that the presence of one or two jets in a statistically steady state is dependent upon the relative values of both the tropical heating and the baroclinic zone width. A set of moist model runs is examined in which the moisture content is systematically varied. For a relatively small moisture content, the circulation prefers a double-jet state. However, for a moisture content that is greater than a certain threshold value, the two jets collapse into a single jet. With the aid of the aforementioned dry model results, an explanation for this nonlinear response exhibited by the moist model is provided. Based on the results of the dry and moist model calculations, this paper discusses various physical interpretations of the circulation responses to global warming presented in the literature.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3