A Seasonal Probabilistic Outlook for Tornadoes (SPOTter) in the Contiguous United States Based on the Leading Patterns of Large-Scale Atmospheric Anomalies

Author:

Lee Sang-Ki1,Lopez Hosmay1,Kim Dongmin12,Wittenberg Andrew T.3,Kumar Arun4

Affiliation:

1. a NOAA/Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida

2. b Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, Florida

3. c NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

4. d NOAA/Climate Prediction Center, College Park, Maryland

Abstract

AbstractThis study presents an experimental model for Seasonal Probabilistic Outlook for Tornadoes (SPOTter) in the contiguous United States for March, April, and May and evaluates its forecast skill. This forecast model uses the leading empirical orthogonal function modes of regional variability in tornadic environmental parameters (i.e., low-level vertical wind shear and convective available potential energy), derived from the NCEP Coupled Forecast System, version 2, as the primary predictors. A multiple linear regression is applied to the predicted modes of tornadic environmental parameters to estimate U.S. tornado activity, which is presented as the probability for above-, near-, and below-normal categories. The initial forecast is carried out in late February for March–April U.S. tornado activity and then is updated in late March for April–May activity. A series of reforecast skill tests, including the jackknife cross-validation test, shows that the probabilistic reforecast is overall skillful for predicting the above- and below-normal area-averaged activity in the contiguous United States for the target months of both March–April and April–May. The forecast model also successfully reforecasts the 2011 super-tornado-outbreak season and the other three most active U.S. tornado seasons in 1982, 1991, and 2008, and thus it may be suitable for an operational use for predicting future active and inactive U.S. tornado seasons. However, additional tests show that the regional reforecast is skillful for March–April activity only in the Ohio Valley and South and for April–May activity only in the Southeast and Upper Midwest. These and other limitations of the current model, along with the future advances needed to improve the U.S. regional-scale tornado forecast, are discussed.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3