Relative Contribution of Greenhouse Gases and Ozone-Depleting Substances to Temperature Trends in the Stratosphere: A Chemistry–Climate Model Study

Author:

Stolarski Richard S.1,Douglass Anne R.1,Newman Paul A.1,Pawson Steven2,Schoeberl Mark R.3

Affiliation:

1. Atmospheric Chemistry and Dynamics Branch, NASA Goddard Space Flight Center, Greenbelt, Maryland

2. Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, Maryland

3. Earth Sciences Division, NASA Goddard Space Flight Center, Greenbelt, Maryland

Abstract

Abstract The temperature of the stratosphere has decreased over the past several decades. Two causes contribute to that decrease: well-mixed greenhouse gases (GHGs) and ozone-depleting substances (ODSs). This paper addresses the attribution of temperature decreases to these two causes and the implications of that attribution for the future evolution of stratospheric temperature. Time series analysis is applied to simulations of the Goddard Earth Observing System Chemistry–Climate Model (GEOS CCM) to separate the contributions of GHGs from those of ODSs based on their different time-dependent signatures. The analysis indicates that about 60%–70% of the temperature decrease of the past two decades in the upper stratosphere near 1 hPa and in the lower midlatitude stratosphere near 50 hPa resulted from changes attributable to ODSs, primarily through their impact on ozone. As ozone recovers over the next several decades, the temperature should continue to decrease in the middle and upper stratosphere because of GHG increases. The time series of observed temperature in the upper stratosphere is approaching the length needed to separate the effects of ozone-depleting substances from those of greenhouse gases using temperature time series data.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3