Validation of Precipitable Water Vapor within the NCEP/DOE Reanalysis Using Global GPS Observations from One Decade

Author:

Vey Sibylle1,Dietrich Reinhard1,Rülke Axel1,Fritsche Mathias1,Steigenberger Peter2,Rothacher Markus2

Affiliation:

1. Institut für Planetare Geodäsie, Technische Universität Dresden, Dresden, Germany

2. Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum, Potsdam, Germany

Abstract

Abstract In contrast to previous studies validating numerical weather prediction (NWP) models using observations from the global positioning system (GPS), this paper focuses on the validation of seasonal and interannual variations in the water vapor. The main advantage of the performed validation is the independence of the GPS water vapor estimates compared to studies using water vapor datasets from radiosondes or satellite microwave radiometers that are already assimilated into the NWP models. Tropospheric parameters from a GPS reanalysis carried out in a common project of the Technical Universities in Munich and Dresden were converted into precipitable water (PW) using surface pressure observations from the WMO and mean atmospheric temperature data from ECMWF. PW time series were generated for 141 globally distributed GPS sites covering the time period from the beginning of 1994 to the end of 2004. The GPS-derived PW time series were carefully examined for their homogeneity. The validation of the NWP model from NCEP shows that the differences between the modeled and observed PW values are time dependent. In addition to establishing a long-term mean, this study also validates the seasonal cycle and interannual variations in the PW. Over Europe and large parts of North America the seasonal cycle and the interannual variations in the PW from GPS and NCEP agree very well. The results reveal a submillimeter accuracy of the GPS-derived PW anomalies. In the regions mentioned above, NCEP provides a highly accurate database for studies of long-term changes in the atmospheric water vapor. However, in the Southern Hemisphere large differences in the seasonal signals and in the PW anomalies were found between GPS and NCEP. The seasonal signal of the PW is underestimated by NCEP in the tropics and in Antarctica by up to 40% and 25%, respectively. Climate change studies based on water vapor data from NCEP should consider the large uncertainties in the analysis when interpreting these data, especially in the tropics.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 90 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3