Projected Changes in Mean and Extreme Precipitation in Africa under Global Warming. Part I: Southern Africa

Author:

Shongwe M. E.1,van Oldenborgh G. J.1,van den Hurk B. J. J. M.1,de Boer B.2,Coelho C. A. S.3,van Aalst M. K.4

Affiliation:

1. Royal Netherlands Meteorological Institute, De Bilt, Netherlands

2. Institute for Marine and Atmospheric Research, Utrecht University, Utrecht, Netherlands

3. Centro de Previsão de Tempo e Estudos Climáticos, Instituto Nacional de Pesquisas Espaciais, Cachoeira Paulista, Brazil

4. Red Cross/Red Crescent Climate Centre, The Hague, Netherlands

Abstract

Abstract This study investigates likely changes in mean and extreme precipitation over southern Africa in response to changes in radiative forcing using an ensemble of global climate models prepared for the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4). Extreme seasonal precipitation is defined in terms of 10-yr return levels obtained by inverting a generalized Pareto distribution fitted to excesses above a predefined high threshold. Both present (control) and future climate precipitation extremes are estimated. The future-to-control climate ratio of 10-yr return levels is then used as an indicator for the likely changes in extreme seasonal precipitation. A Bayesian approach to multimodel ensembling is adopted. The relative weights assigned to each of the model simulations is determined from bias, convergence, and correlation. Using this method, the probable limits of the changes in mean and extreme precipitation are estimated from their posterior distribution. Over the western parts of southern Africa, an increase in the severity of dry extremes parallels a statistically significant decrease in mean precipitation during austral summer months. A notable delay in the onset of the rainy season is found in almost the entire region. An early cessation is found in many parts. This implies a statistically significant shortening of the rainy season. A substantial reduction in moisture influx from the southwestern Indian Ocean during austral spring is projected. This and the preaustral spring moisture deficits are possible mechanisms delaying the rainfall onset in southern Africa. A possible offshore (northeasterly) shift of the tropical–temperate cloud band is consistent with more severe droughts in the southwest of southern Africa and enhanced precipitation farther north in Zambia, Malawi, and northern Mozambique. This study shows that changes in the mean vary on relatively small spatial scales in southern Africa and differ between seasons. Changes in extremes often, but not always, parallel changes in the mean precipitation.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3