Understanding the Characteristics of Daily Precipitation over the United States Using the North American Regional Reanalysis

Author:

Becker Emily J.1,Berbery Ernesto Hugo1,Higgins R. Wayne2

Affiliation:

1. Department of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, Maryland

2. Climate Prediction Center, NOAA/NWS/NCEP, Camp Springs, Maryland

Abstract

Abstract This study examines the seasonal characteristics of daily precipitation over the United States using the North American Regional Reanalysis (NARR). To help understand the physical mechanisms that contribute to changes in the characteristics of daily precipitation, vertically integrated moisture flux convergence (MFC) and precipitable water were included in the study. First, an analysis of the NARR precipitation was carried out because while observed precipitation is indirectly assimilated in the system, differences exist. The NARR mean seasonal amount is very close to that of observations throughout the year, although NARR exhibits a slight systematic bias toward more-frequent, lighter precipitation. Particularly during summer, the precipitation intensity and the probability distribution function (PDF) indicate that NARR somewhat underestimates extremes and overestimates lighter events in the eastern half of the United States. The intensity and PDF of moisture flux convergence exhibit a strong similarity to those of precipitation, suggesting a link between strong MFC and precipitation extremes. On the other hand, the relationship between the precipitable water and precipitation PDFs is weaker, based on the lack of agreement of their gamma distribution parameters. The dependence of the precipitation PDF on the lower-frequency modulation of ENSO was examined. During El Niño winters, the Southwest and central United States, Gulf of Mexico region, and southeastern coast have greater precipitation intensity and extremes than during La Niña, and the Ohio River and Red River basins have lower intensity and fewer extreme events. During summer, the northern Rocky Mountains receive higher intensity precipitation with more extreme events. Most areas where the change in the daily mean precipitation between ENSO phases is large have greater shifts in the extreme tail of the PDF. The ENSO-related response of moisture flux convergence is similar to that of precipitation. ENSO-related shifts in the precipitation PDF do not appear to have a strong relationship to the shifts in precipitable water.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3