Interferential Impact of ENSO and PDO on Dry and Wet Conditions in the U.S. Great Plains

Author:

Hu Zeng-Zhen1,Huang Bohua2

Affiliation:

1. Center for Ocean-Land-Atmosphere Studies, Calverton, Maryland

2. Center for Ocean-Land-Atmosphere Studies, Calverton, Maryland, and Department of Atmospheric, Oceanic, and Earth Sciences, College of Science, George Mason University, Fairfax, Virginia

Abstract

Abstract The influence of the El Niño–Southern Oscillation (ENSO) and Pacific decadal oscillation (PDO) interference on the dry and wet conditions in the Great Plains of the United States has been examined using monthly observational datasets. It is shown that both ENSO and PDO can generate a similar pattern of atmospheric and oceanic anomalies over the eastern part of the North Pacific and western North America that has significant impact on the climate over the Great Plains. Furthermore, the relationship between ENSO–PDO and climate anomalies in the Great Plains is intensified when ENSO and PDO are in phase (El Niño and warm PDO or La Niña and cold PDO). On average, anomalies over the Great Plains favor wet (dry) conditions when both ENSO and PDO are in the positive (negative) phase. However, when ENSO and PDO are out of phase, the relationship is weakened and the anomalies over the Great Plains tend toward neutral. Without ENSO, PDO alone does not affect the North American climate significantly. The relationship is quite robust for different seasons, with the strongest effects for the months of spring and the weakest effects for the months of autumn, whereas the months of winter and summer fall in between. The seasonality of the relationship may be associated with the seasonal dependence of the anomalies of general circulation and the pattern of mean seasonal cycle in the North Pacific. The contrasting impact of the interference of ENSO and PDO on the climate anomalies in the Great Plains is associated with differences in the ocean–atmosphere anomalies. When ENSO and PDO are in phase, the sea surface temperature (SST) anomalies extend from the equatorial Pacific to the higher latitudes of the North Pacific via the eastern ocean. The distribution of the corresponding anomalies of sea level pressure (SLP) and the wind at 1000 hPa form an ellipse with a southeast–northwest orientation of the long axis because the SST anomalies promote coherent changes in SLP in the central North Pacific. In the upper troposphere, a similar teleconnection pattern with the same sign generated by ENSO and PDO is overlapped and enhanced, which favors anomaly (dry and wet) conditions in the Great Plains. However, when ENSO and PDO are out of phase, the SST anomalies have the same sign in the tropical and central North Pacific, which is opposite to the anomalies near the west coast of North America. The anomalously cyclonic circulation over the North Pacific is weaker in the out-of-phase situation than in the in-phase situation. The distribution of the anomalies of SLP and the wind at 1000 hPa resembles a circle. Meanwhile, in the upper troposphere, ENSO and PDO generate a similar teleconnection pattern with opposite sign, causing cancellation of the anomalous circulation and favoring neutral climate in the Great Plains.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3