Simulated Doppler Velocity Signatures of Evolving Tornado-Like Vortices

Author:

Davies-Jones Robert P.1,Wood Vincent T.1

Affiliation:

1. NOAA/National Severe Storms Laboratory, Norman, Oklahoma

Abstract

Abstract Exact solutions of the Navier–Stokes or Euler equations of motion and the continuity equation in cylindrical coordinates for 3D, axisymmetric, inviscid, or laminar flows are utilized to represent evolving vortices that roughly model tornado cyclones or misocyclones contracting to tornadoes. These solutions are unsteady versions of the diffusive Burgers–Rott vortex and the inviscid Rankine-combined vortex. They satisfy the free-slip condition at the ground. Different vortices are obtained by choosing different values of the constant eddy viscosity and uniform horizontal convergence while holding the circulation at infinity constant. A simulated Weather Surveillance Radar-1988 Doppler (WSR-88D) is employed to generate time-varying Doppler velocity signatures in uniform reflectivity of these analytical vortices at ranges of 25 and 50 km from the radar. Mean Doppler velocities are determined by computing 3D integrals over effective resolution volumes. Magnitudes of Doppler vortex signatures at different times in the evolution of the stationary vortices are computed for effective beamwidths of 1.02° and 1.39°, which correspond to azimuthal sampling intervals of 0.5° and 1.0°, respectively. Four tornado predictors—rotational velocity, shear, excess rotational kinetic energy, and circulation—are examined. Results of the simulations show that for smaller effective beamwidths, Doppler vortex signatures are stronger and exceed fixed threshold values of rotational velocity and shear earlier. With finer azimuthal resolution, tornado cyclone, misocyclone, or tornado signatures switch to tornadic vortex signatures later. Circulations of the vortex signatures give good estimates of the circulations of the simulated tornadoes and tornado cyclones with relative insensitivity to range, effective beamwidth, and stage of evolution. High circulation and convergence values of a rotation signature reveal the potential for a tornado earlier than all the other predictors, which increase significantly during tornadogenesis.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3