Probabilistic Seasonal Forecasting of African Drought by Dynamical Models

Author:

Yuan Xing1,Wood Eric F.1,Chaney Nathaniel W.1,Sheffield Justin1,Kam Jonghun1,Liang Miaoling1,Guan Kaiyu1

Affiliation:

1. Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey

Abstract

Abstract As a natural phenomenon, drought can have devastating impacts on local populations through food insecurity and famine in the developing world, such as in Africa. In this study, the authors have established a seasonal hydrologic forecasting system for Africa. The system is based on the Climate Forecast System, version 2 (CFSv2), and the Variable Infiltration Capacity (VIC) land surface model. With a set of 26-yr (1982–2007) seasonal hydrologic hindcasts run at 0.25°, the probabilistic drought forecasts are validated using the 6-month Standard Precipitation Index (SPI6) and soil moisture percentile as indices. In terms of Brier skill score (BSS), the system is more skillful than climatology out to 3–5 months, except for the forecast of soil moisture drought over central Africa. The spatial distribution of BSS, which is similar to the pattern of persistency, shows more heterogeneity for soil moisture than the SPI6. Drought forecasts based on SPI6 are generally more skillful than for soil moisture, and their differences originate from the skill attribute of resolution rather than reliability. However, the soil moisture drought forecast can be more skillful than SPI6 at the beginning of the rainy season over western and southern Africa because of the strong annual cycle. Singular value decomposition (SVD) analysis of African precipitation and global SSTs indicates that CFSv2 reproduces the ENSO dominance on rainy season drought forecasts quite well, but the corresponding SVD mode from observations and CFSv2 only account for less than 24% and 31% of the covariance, respectively, suggesting that further understanding of drought drivers, including regional atmospheric dynamics and land–atmosphere coupling, is necessary.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3