Combining Datasets of Satellite-Retrieved Products. Part I: Methodology and Water Budget Closure

Author:

Aires Filipe1

Affiliation:

1. Estellus, France, and Laboratoire de l’Etude du Rayonnement et de la Matière en Astrophysique, CNRS, Observatoire de Paris, Paris, France, and Earth Institute and Department of Earth and Environmental Engineering, Columbia University, New York, New York

Abstract

Abstract This study addresses in general terms the problem of the optimal combination of multiple observation datasets. Only satellite-retrieved geophysical parameter datasets are considered here (not the raw satellite observations). This study focuses on the terrestrial water cycle and presents methodologies to obtain a coherent dataset of four water cycle key components: precipitation, evapotranspiration, runoff, and terrestrial water storage. Various innovative “integration” methodologies are introduced: simple weighting (SW), constrained linear (CL), optimal interpolation (OI), and neural networks (NN). The term “integration” will be used here, not “assimilation,” as no model will be included in the data fusion process. A simple postprocessing filtering (PF) step can be used to impose the water cycle budget closure after the integration method. It is shown that this constraint actually improves the estimation of the water cycle components. The integration techniques are tested using real observation data over the Mississippi and Niger basins from satellite and in situ measurements. A Monte Carlo experiment with a synthetic uncertainty perturbation model is used to measure the ability of the SW, OI, and NN, with or without the PF step, to retrieve the four water cycle components. Once the PF closure constraint is added, the methodologies have equivalent accuracies. The need for these types of methodologies should increase in the future since multiple observation datasets are now available and the climate community needs to combine them into a unique, optimal, and coherent dataset of multiple parameters. A companion paper will test these methodologies on satellite observation datasets at the basin and global scales.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3