Entropy–Copula in Hydrology and Climatology

Author:

AghaKouchak Amir1

Affiliation:

1. Center for Hydrometeorology and Remote Sensing, Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, California

Abstract

Abstract The entropy theory has been widely applied in hydrology for probability inference based on incomplete information and the principle of maximum entropy. Meanwhile, copulas have been extensively used for multivariate analysis and modeling the dependence structure between hydrologic and climatic variables. The underlying assumption of the principle of maximum entropy is that the entropy variables are mutually independent from each other. The principle of maximum entropy can be combined with the copula concept for describing the probability distribution function of multiple dependent variables and their dependence structure. Recently, efforts have been made to integrate the entropy and copula concepts (hereafter, entropy–copula) in various forms to take advantage of the strengths of both methods. Combining the two concepts provides new insight into the probability inference; however, limited studies have utilized the entropy–copula methods in hydrology and climatology. In this paper, the currently available entropy–copula models are reviewed and categorized into three main groups based on their model structures. Then, a simple numerical example is used to illustrate the formulation and implementation of each type of the entropy–copula model. The potential applications of entropy–copula models in hydrology and climatology are discussed. Finally, an example application to flood frequency analysis is presented.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 68 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3