Hydrologic Prediction over the Conterminous United States Using the National Multi-Model Ensemble

Author:

Mo Kingtse C.1,Lettenmaier Dennis P.2

Affiliation:

1. Climate Prediction Center, NOAA/NWS/NCEP, College Park, Maryland

2. Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington

Abstract

Abstract The authors analyzed the skill of monthly and seasonal soil moisture (SM) and runoff (RO) forecasts over the United States performed by driving the Variable Infiltration Capacity (VIC) hydrologic model with forcings derived from the National Multi-Model Ensemble hindcasts (NMME_VIC). The grand ensemble mean NMME_VIC forecasts were compared to ensemble streamflow prediction (ESP) forecasts derived from the VIC model forced by resampling of historical observations during the forecast period (ESP_VIC), using the same initial conditions as NMME_VIC. The forecast period is from 1982 to 2010, with the forecast initialized on 1 January, 1 April, 5 July, and 3 October. Overall, forecast skill is seasonally and regionally dependent. The authors found that 1) the skill of the grand ensemble mean NMME_VIC forecasts is comparable with that of the individual model that has the highest skill; 2) for all forecast initiation dates, the initial conditions play a dominant role in forecast skill at 1-month lead, and at longer lead times, forcings derived from NMME forecasts start to contribute to forecast skill; and 3) the initial conditions dominate contributions to skill for a dry climate regime that covers the western interior states for all seasons and the north-central part of the country for January. In this regime, the forecast skill for both methods is high even at 3-month lead. This regime has low mean precipitation and precipitation variations, and the influence of precipitation on SM and RO is weak. In contrast, a wet regime covers the region from the Gulf states to the Tennessee and Ohio Valleys for forecasts initialized in January and April, the Southwest monsoon region, the Southeast, and the East Coast in summer. In these dynamically active regions, where rainfall depends on the path of the moisture transport and atmospheric forcing, forecast skill is low. For this regime, the climate forecasts contribute to skill. Skillful precipitation forecasts after lead 1 have the potential to improve SM and RO forecast skill, but it was found that this mostly was not the case for the NMME models.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3