Determining the Optimal Spatial Distribution of Weather Station Networks for Hydrological Modeling Purposes Using RCM Datasets: An Experimental Approach

Author:

Arsenault Richard1,Brissette François1

Affiliation:

1. École de Technologie Supérieure, Montréal, Québec, Canada

Abstract

Abstract In many hydrological studies, the main limiting factor in model performance is the low meteorological data quality. In some cases, no meteorological records even exist. Installing weather stations becomes a necessity in these areas when water resource management becomes an issue. The objective of this study is to propose a new experimental and exploratory method for determining the optimal density of a weather station network when being used for long-term hydrological modeling. Data from the Canadian Regional Climate Model at 15-km resolution (CRCM15) were used to create a virtual network of stations with long and complete series of meteorological data over the Toulnustouc River basin in central Québec, Canada. The weather stations to be fed to HSAMI, Hydro-Québec's lumped rainfall–runoff hydrological model, were selected in order to minimize the number of stations while maintaining the best hydrological performance possible using a multi-objective optimization algorithm. It was shown that the number of stations making up the network on the Toulnustouc River basin should be at least two but not higher than four. If the stations are positioned optimally, there is little to no gain to be made with a denser network. The optimization algorithm clearly identified that combinations of two or three stations can result in better hydrological performance than if a high-density network was fed to the model. Thus, the major conclusion of this study is that if weather stations are positioned at optimal locations, a very few number of them are required to model runoff with as good as or better performance than when a high-density network is used.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3