Efficient Ensemble Covariance Localization in Variational Data Assimilation

Author:

Bishop Craig H.1,Hodyss Daniel1,Steinle Peter2,Sims Holly2,Clayton Adam M.3,Lorenc Andrew C.3,Barker Dale M.3,Buehner Mark4

Affiliation:

1. Naval Research Laboratory, Monterey, California

2. Bureau of Meteorology, Melbourne, Australia

3. Met Office, Exeter, United Kingdom

4. Meteorological Research Division, Environment Canada, Dorval, Canada

Abstract

Abstract Previous descriptions of how localized ensemble covariances can be incorporated into variational (VAR) data assimilation (DA) schemes provide few clues as to how this might be done in an efficient way. This article serves to remedy this hiatus in the literature by deriving a computationally efficient algorithm for using nonadaptively localized four-dimensional (4D) or three-dimensional (3D) ensemble covariances in variational DA. The algorithm provides computational advantages whenever (i) the localization function is a separable product of a function of the horizontal coordinate and a function of the vertical coordinate, (ii) and/or the localization length scale is much larger than the model grid spacing, (iii) and/or there are many variable types associated with each grid point, (iv) and/or 4D ensemble covariances are employed.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3