Predecessor Rain Events ahead of Tropical Cyclones

Author:

Galarneau Thomas J.1,Bosart Lance F.1,Schumacher Russ S.2

Affiliation:

1. Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York

2. Department of Atmospheric Sciences, Texas A&M University, College Station, Texas

Abstract

Abstract Twenty-eight predecessor rain events (PREs) that occurred over the United States east of the Rockies during 1995–2008 are examined from a synoptic climatology and case study perspective. PREs are coherent mesoscale regions of heavy rainfall, with rainfall rates ≥100 mm (24 h)−1, that can occur approximately 1000 km poleward of recurving tropical cyclones (TCs). PREs occur most commonly in August and September, and approximately 36 h prior to the arrival of the main rain shield associated with the TC. A distinguishing feature of PREs is that they are sustained by deep tropical moisture that is transported poleward directly from the TC. PREs are high-impact weather events that can often result in significant inland flooding, either from the PRE itself or from the subsequent arrival of the main rain shield associated with the TC that falls onto soils already saturated by the PRE. The composite analysis shows that on the synoptic-scale, PREs form in the equatorward jet-entrance region of a 200-hPa jet on the western flank of a 925-hPa equivalent potential temperature ridge located east of a 700-hPa trough. On the mesoscale, PREs occur in conjunction with low-level frontogenetical forcing along a baroclinic zone where heavy rainfall is focused. A case study analysis was conducted of a PRE ahead of TC Erin (2007) that produced record-breaking rainfall (>250 mm) from southern Minnesota to Lake Michigan. This analysis highlighted the importance of frontogenetical forcing along a low-level baroclinic zone in the presence of deep tropical moisture from TC Erin in producing a long-lived, quasi-stationary mesoscale convective system.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3