Observability of Flow-Dependent Structure Functions for Use in Data Assimilation

Author:

Lupu Cristina1,Gauthier Pierre1

Affiliation:

1. Department of Earth and Atmospheric Sciences, Université du Québec à Montréal, Montréal, Québec, Canada

Abstract

Abstract One of the objectives of data assimilation is to produce initial conditions that will improve the quality of forecasts. Studies on singular vectors and sensitivity studies have shown that small changes to the initial conditions can sometimes lead to exponential error growth. This has motivated research to include flow-dependent structures within the assimilation that would have the characteristics to correctly predict the growth or decay of meteorological systems. This relates to the characterization of precursors to atmospheric instability. In this paper, the observability of such structures by observations is discussed. Several studies have shown that deploying observations over regions where changes in the initial conditions may impact the forecast the most do not lead to the expected benefit. In this paper, it is shown that given the small magnitude of the signal to be detected, it is important to take into account the accuracy of the observations. If the signal-to-noise ratio is too low, observations cannot detect and characterize precursors to forecast error growth. From that perspective, the assimilation only has the possibility to extract information about evolved structures of error growth. Experiments with a simple one-dimensional variational data assimilation (1D-Var) system are presented and, then, an adapted three-dimensional variational data assimilation (3D-Var) system with different sensitivity structure functions is used. The results have been obtained by adapting the variational assimilation system of Environment Canada.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3