Data Assimilation: A Fully Nonlinear Approach to Ensemble Formation Using Indistinguishable States

Author:

Khare Shree1,Smith Leonard A.2

Affiliation:

1. National Center for Atmospheric Research, Boulder, Colorado

2. London School of Economics, London, United Kingdom

Abstract

Abstract Operational forecasting with simulation models involves the melding of observations and model dynamics to determine a set of initial conditions for each forecast. The Kalman filter (KF) provides the optimal closed-form solution to a general linear stochastic (perfect model) case, while the target of the problem has not even been defined in the case of imperfect models. Data assimilation in a nonlinear, perfect-model scenario is considered. It is shown that a new fully nonlinear approach based upon the indistinguishable states (IS) systematically outperforms the ensemble Kalman filter (EnKF). The IS provides an ensemble of initial conditions, consistent with (i) the model dynamics, (ii) the observational noise model, and (iii) the particular observations over a window. It is argued that this is the relevant limit to consider in data assimilation, when the desire is to place high probability density in the vicinity of the target state. The advantages of the IS approach come in part from its ability to provide attractor-balanced ensembles near any attracting manifold the system may evolve on. The use of an EnKF, provides a computationally cheaper alternative that place points in the general vicinity of the target. A low (i.e., 2) dimensional example is used to provide easily visualized evidence for these claims, which are then tested in a higher (i.e., 12) dimensional system. Inasmuch as the IS approach is shown to outperform the EnKF systematically in these perfect-model experiments, it provides an interesting alternative approach when informative ensembles are desired.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3