Modeling and Forecasting the Onset and Duration of Severe Radiation Fog under Frost Conditions

Author:

van der Velde I. R.1,Steeneveld G. J.1,Wichers Schreur B. G. J.2,Holtslag A. A. M.1

Affiliation:

1. Meteorology and Air Quality Section, Wageningen University, Wageningen, Netherlands

2. KNMI, Royal Netherlands Meteorological Institute, De Bilt, Netherlands

Abstract

Abstract A case of a severe radiation fog during frost conditions is analyzed as a benchmark for the development of a very high-resolution NWP model. Results by the Weather Research and Forecasting model (WRF) and the High-Resolution Limited-Area Model (HIRLAM) are evaluated against detailed observations to determine the state-of-the-art in fog forecasting and to derive requirements for further research and development. For this particular difficult case, WRF is unable to correctly simulate the fog for any of the parameterizations and model configurations utilized. Contrary, HIRLAM does model the onset of fog, but is unable to represent it beyond the lowest model layer, which leads to an early dispersal of fog in the morning transition. The sensitivity of fog forecasts to model formulation is further analyzed with a high-resolution single-column version of HIRLAM, and with the Duynkerke single-column model as a reference. The single-column results are found to be sensitive to the proper specification of the external forcings. It is reconfirmed that high vertical resolution is essential for modeling the fog formation, the growth of the fog layer, and when the fog lifts for the maintenance of a stratus deck. The properly configured column models are able to accurately model the onset of fog and its maturation, but fail in the simulation of fog persistence and subsequent dispersal. Details of the turbulence parameterization appear to be important in this process. It is concluded that, despite all of the advances in numerical weather prediction, fog forecasting is still a major challenge.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 111 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3