Case Study of an Intense African Easterly Wave

Author:

Berry Gareth J.1,Thorncroft Chris1

Affiliation:

1. Department of Earth and Atmospheric Sciences, The University at Albany, State University of New York, Albany, New York

Abstract

The life cycle of an intense African easterly wave (AEW) over the African continent is examined using European Centre for Medium-Range Weather Forecasts (ECMWF) operational analyses, Meteosat satellite images, and synoptic observations. This system, the strongest AEW of 2000, can be tracked from central North Africa into the eastern Atlantic Ocean, where it is associated with the genesis of Hurricane Alberto. Synoptic analysis of the kinematic and thermodynamic fields is supplemented by analysis of potential vorticity (PV), allowing exploration at the role of multiple scales in the evolution of this AEW. The authors’ analysis promotes the division of the AEW life cycle into three distinctive phases. (i) Initiation: The AEW development is preceded by a large convective event composed of several mesoscale convective systems over elevated terrain in Sudan. This convection provides a forcing on the baroclinically and barotropically unstable state that exists over tropical North Africa. (ii) Baroclinic growth: A low-level warm anomaly, generated close to the initial convection, interacts with a midtropospheric strip of high PV that exists on the cyclonic shear side of the African easterly jet, which is consistent with baroclinic growth. This interaction is reinforced by the generation of subsynoptic-scale PV anomalies by deep convection that is embedded within the baroclinic AEW structure. (iii) West coast development: Near the West African coast, the baroclinic structure weakens, but convection is maintained. The midtropospheric PV anomalies embedded within the AEW merge with one another and with PV anomalies that are generated by convection over topography ahead of the system. These mergers result in the production of a significant PV feature that leaves the West African coast and rapidly undergoes tropical cyclogenesis.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 162 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3