Turbulent Mixing and Exchange with Interior Waters on Sloping Boundaries

Author:

Kunze Eric1,MacKay Chris2,McPhee-Shaw Erika E.3,Morrice Katie3,Girton James B.1,Terker Samantha R.1

Affiliation:

1. Applied Physics Laboratory, University of Washington, Seattle, Washington

2. North Saanich, British Columbia, Canada

3. Moss Landing Marine Laboratories, San Jose State University, Moss Landing, California

Abstract

Abstract Microstructure measurements along the axes of Monterey and Soquel Submarine Canyons reveal 200–300-m-thick well-stratified turbulent near-bottom layers with average turbulent kinetic energy dissipation rates 〈ɛ〉 = 4 × 10−8 W kg−1 and eddy diffusivities K = 16 × 10−4 m2 s−1 (assuming mixing efficiency γ = 0.2) to at least thalweg depths of 1200 m. Turbulent dissipation rates are an order of magnitude lower in overlying waters, whereas buoyancy frequencies are only 25% higher. Well-mixed bottom boundary layer thicknesses hN are an order of magnitude thinner than the stratified turbulent layer (hN ≪ hɛ). Because well-stratified turbulent layers are commonly observed above slopes, arguments that mixing efficiency should be reduced on sloping boundaries do not hold in cases of energetic internal-wave generation or interaction with topography. An advective–diffusive balance is used to infer velocities and transports, predicting horizontal upslope flows of 10–50 m day−1. Extrapolating this estimate globally suggests that canyon turbulence may contribute 2–3 times as much diapycnal transport to the World Ocean as interior mixing. The upcanyon turbulence-driven transports are not uniform, and the resulting upslope convergences will drive exchange between the turbulent layer and more quiescent interior. Predicted density surfaces of detrainment and entrainment are consistent with observed isopycnals of intermediate nepheloid and clear layers. These data demonstrate that turbulent mixing dynamics on sloping topography are fundamentally 2D or 3D in the ocean, so they cannot be accurately described by 1D models.

Publisher

American Meteorological Society

Subject

Oceanography

Cited by 73 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Internal Waves Force Elevated Turbulent Mixing at Barkley Canyon;Journal of Geophysical Research: Oceans;2024-07

2. Effects of internal waves on bottom thermal structures and turbulent mixing in the Xisha Islands;Deep Sea Research Part I: Oceanographic Research Papers;2024-07

3. Observations of diapycnal upwelling within a sloping submarine canyon;Nature;2024-06-26

4. Temporal Pattern and Profile of a Coastal‐Deep Sea Conveyor at a Marginal Deep Oligotrophic Sea;Journal of Geophysical Research: Oceans;2024-05-31

5. Near-slope turbulence in a Rockall canyon;Deep Sea Research Part I: Oceanographic Research Papers;2024-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3