Affiliation:
1. National Oceanography Centre, Liverpool, United Kingdom
Abstract
Abstract
The effect of tides, river, wind and Earth’s rotation on the three-dimensional circulation in the Dee, a macrotidal estuary, are investigated using a fine-resolution model. The interactions of the large tidal amplitude, currents, river, and wind-generated circulation require baroclinic and unsteady studies to properly understand the estuarine dynamics. Assessment of the model skill has been carried out by model–observation comparisons for salinity, which is the main control for density, surface elevation, current, and turbulence. Stationary nondimensional numbers were only partially able to characterize the dynamics in this (real) complex macrotidal estuary. At low water, tidal straining and constrained river flow cause stratification. Large spatial variability occurs in the current and residual patterns, with flood-dominated maximum values occurring within the tidal channels. The tides control residual circulation by modulating stratification through tidal straining and bathymetric constraint on river flow. Tide–stratification–river interaction causes an unsteady pattern of residual circulation and tidal pulses. River-induced pulses are enhanced near low tide–inducing density-driven circulation. Wind effects are concentrated near the surface, mainly occurring at high tide because of increased fetch. Even though Coriolis has, overall, a small contribution it produces tidal pulses modifying the current and salinity distribution.
Publisher
American Meteorological Society
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献