Affiliation:
1. International Pacific Research Center, University of Hawaii at Manoa, Honolulu, Hawaii
Abstract
Abstract
The quasi-biweekly oscillation (QBW: here defined as a 12–20-day oscillation) is one of the major systems that affect tropical and subtropical weather and seasonal mean climate. However, knowledge is limited concerning its temporal and spatial structures and dynamics, particularly in a global perspective. To advance understanding of the QBW, its life cycle is documented using a tracking method and extended EOF analysis. Both methods yield consistent results. The analyses reveal a wide variety of QBW activity in terms of initiation, movement, development, and dissipation. The convective anomalies associated with the QBW are predominant in the latitude bands between 10° and 30° in both hemispheres. The QBW modes tend to occur regionally and be associated with monsoons. Three boreal summer modes are identified in the Asia–Pacific, Central America, and subtropical South Pacific regions. Five austral summer modes are identified in the Australia–southwest Pacific, South Africa–Indian Ocean, South America–Atlantic, subtropical North Pacific, and North Atlantic–North Africa regions.
The QBW modes are classified into two categories: westward- and eastward-propagating modes. The westward mode is found in the Asia–Pacific and Central America regions during boreal summer; it originates in the tropics and dissipates in the subtropics. The behavior of the westward-propagating mode can be understood in terms of equatorial Rossby waves in the presence of monsoon mean flow and convective coupling. The eastward-propagating mode, on the other hand, connects with upstream extratropical Rossby wave trains and propagates primarily eastward and equatorward. Barotropic Rossby wave trains play an essential role in controlling initiation, development, and propagation of the eastward QBW mode in the subtropics. The results therefore suggest that not only tropical but also extratropical dynamics are required for fully understanding the behavior of the QBW systems worldwide. The new conceptual picture of QBW obtained here based on long-term observation provides valuable information on the behavior of QBW systems in a global perspective, which is important for a thorough understanding of tropical variability on a time scale between day-to-day weather and the Madden–Julian oscillation.
Publisher
American Meteorological Society
Cited by
188 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献