On the Strong Seasonal Currents in the Deep Ocean

Author:

Saenko Oleg A.1

Affiliation:

1. Canadian Centre for Climate Modelling and Analysis, Environment Canada, Victoria, British Columbia, Canada

Abstract

Abstract Using a set of models, including one with a resolution of ¼°, several aspects of the simulated seasonal currents in the deep ocean are considered. It is shown that over vast areas of the deep interior, particularly in the Indian Ocean, annual-mean circulation represents a small residual of much stronger seasonal flows. In many places the seasonal horizontal velocities are of the order of 10−2 m s−1, reaching locally to 10−1 m s−1; the corresponding vertical velocities are of the order of 10−5 m s−1. An idealized geometry model is employed to confirm the notion that much of this seasonal variability in the deep-ocean circulation can be attributed to the annual cycle of wind stress, combined with the significant increase in the vertical trapping depth for basin-scale seasonal forcing. It is suggested that, at least on seasonal time scales, the so-called bottom pressure torque can be an important term in the depth-integrated vorticity balance. An interaction of these relatively strong flows (of nontidal origin) with bottom topography may contribute to diapycnal mixing in the deep ocean in a manner similar to that proposed recently for the Southern Ocean. In addition, it is found that under a plausible climate change scenario, the amplitude of the mean annual cycle of wind stress may change. Among the regions where such changes are most pronounced is that in the extratropical North Pacific. It is shown that the data on surface wind stress can be effectively used to identify the seasons with the largest changes in the deep-reaching overturning cells. Finally, unlike what might be expected from the earlier theories, the annual-mean circulation simulated by the model with ¼° resolution has the deep interior flows that tend to group into jetlike structures, often having a predominant equatorward rather than poleward direction.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference36 articles.

1. Spin-up of a stratified ocean with application to upwelling.;Anderson;Deep-Sea Res.,1975

2. Spin-up of a stratified ocean, with topography.;Anderson;Deep-Sea Res.,1977

3. Annual cycle of poleward heat transport in the ocean: Results from high-resolution modeling of the North and equatorial Atlantic.;Boning;J. Phys. Oceanogr.,1994

4. Evidence for wind-driven current fluctuations in the western North Atlantic.;Brink;J. Geophys. Res.,1989

5. Seasonal variation in meridional overturning and poleward heat transport in the Atlantic and Pacific Oceans: A model study.;Bryan;J. Mar. Res.,1982

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3