Seasonal-to-Interannual Variability of Ethiopia/Horn of Africa Monsoon. Part I: Associations of Wavelet-Filtered Large-Scale Atmospheric Circulation and Global Sea Surface Temperature

Author:

Segele Zewdu T.1,Lamb Peter J.2,Leslie Lance M.3

Affiliation:

1. Cooperative Institute for Mesoscale Meteorological Studies, The University of Oklahoma, Norman, Oklahoma

2. Cooperative Institue for Mesocale Meteorological Studies, and School of Meteorology, The Unversity of Oklahoma, Norman, Oklahoma

3. School of Meteorology, The University of Oklahoma, Norman, Oklahoma

Abstract

Abstract Horn of Africa rainfall varies on multiple time scales, but the underlying climate system controls on this variability have not been examined comprehensively. This study therefore investigates the linkages between June–September Horn of Africa (especially Ethiopian) rainfall and regional atmospheric circulation and global sea surface temperature (SST) variations on several key time scales. Wavelet analysis of 5-day average or monthly total rainfall for 1970–99 identifies the dominant coherent modes of rainfall variability. Several regional atmospheric variables and global SST are then identically wavelet filtered, based on the rainfall frequency bands. Regression, correlation, and composite analyses are subsequently used to identify the most important rainfall–climate system time-scale relationships. The results show that Ethiopian monsoon rainfall variation is largely linked with annual time-scale atmospheric circulation patterns involving variability in the major components of the monsoon system. Although variability on the seasonal (75–210 days), quasi-biennial (QB; 1.42–3.04 yr), and El Niño–Southern Oscillation (ENSO; 3.04–4.60 yr) time scales accounts for much less variance than the annual mode (210 days–1.42 yr), they significantly affect Ethiopian rainfall by preferentially modulating the major regional monsoon components and remote teleconnection linkages. The seasonal time scale largely acts in phase with the annual mode, by enhancing or reducing the lower-tropospheric southwesterlies from the equatorial Atlantic during wet or dry periods. The wet QB phase strengthens the Azores and Saharan high and the tropical easterly jet (TEJ) over the Arabian Sea, while the wet ENSO phase enhances the Mascarene high, the TEJ, and the monsoon trough more locally. The effects of tropical SST on Ethiopian rainfall also are prominent on the QB and ENSO time scales. While rainfall–SST correlations for both the QB and ENSO modes are strongly positive (negative) over the equatorial western (eastern) Pacific, only ENSO exhibits widespread strong negative correlations over the Indian Ocean. Opposite QB and ENSO associations tend to characterize dry Ethiopian conditions. The relationships identified on individual time scales now are being used to develop and validate statistical prediction models for Ethiopia.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 85 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3