Frequency Distribution of Daily ITCZ Patterns over the Western–Central Pacific

Author:

Chen Baode1,Lin Xin2,Bacmeister Julio T.2

Affiliation:

1. Shanghai Typhoon Institute, Chinese Meteorological Administration, Shanghai, China

2. Goddard Earth Sciences and Technology Center, University of Maryland, Baltimore County, Baltimore, Maryland

Abstract

Abstract This study attempts to explore a comprehensive and compact approach for delineating the multiscale and multivariate characteristics of the ITCZ over the western–central Pacific based on daily satellite observations of precipitation, SSTs, and surface winds. Essentially six distinct ITCZ spatial patterns—namely, the north, south, equator, double, full, and weak—are identified according to the daily percentage coverage of deep convection within different latitudinal bands on and off the equator over the western–central Pacific. The evolving structure of the ITCZ over the western–central Pacific is investigated with a focus on the transient statistical characteristics. The relationship between these daily ITCZ patterns and SSTs, and near-surface winds, is also examined. The north (37%), south (24%), and weak (24%) ITCZs represent the three major ITCZ daily patterns over the western–central Pacific, and combined they account for almost 85% of the total number of days within a 10-yr period. The other three ITCZ patterns, namely, the equator (3%), double (6%), and full (5%) ITCZs, occur infrequently. The climatology of the ITCZ, such as monthly, seasonal, and annual means, can be approximately determined by how often and intense these ITCZ daily spatial patterns occur within a specified period. Taking the long-term mean statistics for each ITCZ daily type into account, the double ITCZ deep convection typically observed over the western–central Pacific in monthly, seasonal, and annual mean plots appears to be mainly associated with the frequent occurrence of the north and south ITCZ patterns, instead of the double ITCZ pattern in which an ITCZ appears on each side of the equator simultaneously on a daily basis. Consistent with the strong seasonality in their frequency of occurrence, the three major ITCZ patterns indicate a dominant correspondence with the seasonal meridional migration of warm SSTs. In contrast, the three less frequent ITCZ patterns show a close relationship with the positive or negative SST anomaly over the equatorial central and eastern Pacific, namely, the extension and retraction of the equatorial cool tongue and its strength. Surface wind divergence/convergence does not show any distinct patterns for these ITCZ spatial patterns, suggesting that little relationship between low-level convergence and precipitation can be discerned from daily data. As an application of the method proposed, the frequency distribution of daily ITCZ patterns, as derived from a recent version of the National Aeronautics and Space Administration (NASA) Goddard Earth Observing System (GEOS) general circulation model (GCM), is evaluated against observations. Preliminary comparisons indicate that the GEOS-5 GCM is capable of simulating the correct ITCZ spatial patterns, but their occurrence frequencies can be further improved, in particular, the weak ITCZ and the patterns with fewer occurrences, which may be associated with significantly different control mechanisms and/or feedbacks.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3