Observed 1970–2005 Cooling of Summer Daytime Temperatures in Coastal California

Author:

Lebassi Bereket1,González Jorge1,Fabris Drazen1,Maurer Edwin2,Miller Norman3,Milesi Cristina4,Switzer Paul5,Bornstein Robert6

Affiliation:

1. *Department of Mechanical Engineering, Santa Clara University, Santa Clara, California

2. Department of Civil Engineering, Santa Clara University, Santa Clara, California

3. Climate Science Department, Lawrence Berkeley National Laboratory, Berkeley, California

4. University Corporation at Monterey Bay, Seaside, and NASA Ames Research Center, Mountain View, California

5. Department of Statistics, and Department of Environmental and Earth Systems Science, Stanford University, Stanford, California

6. **Department of Meteorology, San José State University, San José, California

Abstract

Abstract This study evaluated 1950–2005 summer [June–August (JJA)] mean monthly air temperatures for two California air basins: the South Coast Air Basin (SoCAB) and the San Francisco Bay Area (SFBA). The study focuses on the more rapid post-1970 warming period, and its daily minima temperature Tmin and maxima temperature Tmax values were used to produce average monthly values and spatial distributions of trends for each air basin. Additional analyses included concurrent SSTs, 40-yr European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40) sea level coastal pressure gradients, and GCM-downscaled average temperature Tave values. Results for all 253 California National Weather Service (NWS) Cooperative Observer Program (COOP) sites together showed increased Tave values (0.23°C decade−1); asymmetric warming, as Tmin values increase faster than Tmax values (0.27° versus 0.04°C decade−1) and thus decreased daily temperature range (DTR) values (0.15°C decade−1). The spatial distribution of observed SoCAB and SFBA Tmax values exhibited a complex pattern, with cooling (−0.30°C decade−1) in low-elevation coastal areas open to marine air penetration and warming (0.32°C decade−1) in inland areas. Results also showed that decreased DTR values in the basins arose from small increases at inland sites (0.16°C decade−1) combined with large decreases (−0.58°C decade−1) at coastal sites. It is also possible that some of the current observed temperature trends could be associated with low-frequency decadal variability, expected even with a constant radiative forcing. Previous studies suggest that cooling JJA Tmax values in coastal California were a result of increased irrigation, coastal upwelling, or cloud cover. The current hypothesis is that they arise (as a possible “reverse reaction”) from the global warming of inland areas, which results in increased sea-breeze flow activity. GCM model Tave warming decreased from 0.13°C decade−1 at inland sites to 0.08°C decade−1 in coastal areas. Sea level pressure increased in the Pacific high and decreased in the thermal low. The corresponding gradient thus showed a trend of 0.04 hPa 100 km−1 decade−1, supportive of the hypothesis of increased sea-breeze activity.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 73 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3