Effect of Volcanic Eruptions on the Vertical Temperature Profile in Radiosonde Data and Climate Models

Author:

Free Melissa1,Lanzante John2

Affiliation:

1. NOAA/Air Resources Laboratory, Silver Spring, Maryland

2. NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Abstract

Abstract Both observed and modeled upper-air temperature profiles show the tropospheric cooling and tropical stratospheric warming effects from the three major volcanic eruptions since 1960. Detailed comparisons of vertical profiles of Radiosonde Atmospheric Temperature Products for Assessing Climate (RATPAC) and Hadley Centre Atmospheric Temperatures, version 2 (HadAT2), radiosonde temperatures with output from six coupled GCMs show good overall agreement on the responses to the 1991 Mount Pinatubo and 1982 El Chichón eruptions in the troposphere and stratosphere, with a tendency of the models to underestimate the upper-tropospheric cooling and overestimate the stratospheric warming relative to observations. The cooling effect at the surface in the tropics is amplified with altitude in the troposphere in both observations and models, but this amplification is greater for the observations than for the models. Models and observations show a large disagreement around 100 mb for Mount Pinatubo in the tropics, where observations show essentially no change, while models show significant warming of ∼0.7 to ∼2.6 K. This difference occurs even in models that accurately simulate stratospheric warming at 50 mb. Overall, the Parallel Climate Model is an outlier in that it simulates more volcanic-induced stratospheric warming than both the other models and the observations in most cases. From 1979 to 1999 in the tropics, RATPAC shows a trend of less than 0.1 K decade−1 at and above 300 mb before volcanic effects are removed, while the mean of the models used here has a trend of more than 0.3 K decade−1, giving a difference of ∼0.2 K decade−1. At 300 mb, from 0.02 to 0.10 K decade−1 of this difference may be due to the influence of volcanic eruptions, with the smaller estimate appearing more likely than the larger. No more than ∼0.03 K of the ∼0.1-K difference in trends between the surface and troposphere at 700 mb or below in the radiosonde data appears to be due to volcanic effects.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3