Bias Adjustment of Satellite Precipitation Estimation Using Ground-Based Measurement: A Case Study Evaluation over the Southwestern United States

Author:

Boushaki Farid Ishak1,Hsu Kuo-Lin1,Sorooshian Soroosh1,Park Gi-Hyeon1,Mahani Shayesteh2,Shi Wei3

Affiliation:

1. Center for Hydrometeorology and Remote Sensing, Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, California

2. NOAA/CREST Center, Civil Engineering Department, City College of New York, City University of New York, New York, New York

3. NOAA/Climate Prediction Center, Camp Springs, Maryland

Abstract

Abstract Reliable precipitation measurement is a crucial component in hydrologic studies. Although satellite-based observation is able to provide spatial and temporal distribution of precipitation, the measurements tend to show systematic bias. This paper introduces a grid-based precipitation merging procedure in which satellite estimates from the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks–Cloud Classification System (PERSIANN–CCS) are adjusted based on the Climate Prediction Center (CPC) daily rain gauge analysis. To remove the bias, the hourly CCS estimates were spatially and temporally accumulated to the daily 1° × 1° scale, the resolution of CPC rain gauge analysis. The daily CCS bias was then downscaled to the hourly temporal scale to correct hourly CCS estimates. The bias corrected CCS estimates are called the adjusted CCS (CCSA) product. With the adjustment from the gauge measurement, CCSA data have been generated to provide more reliable high temporal/spatial-resolution precipitation estimates. In the case study, the CCSA precipitation estimates from the proposed approach are compared against ground-based measurements in high-density gauge networks located in the southwestern United States.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 84 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3