Influence of Rainfall Scenario Construction Methods on Runoff Projections

Author:

Mpelasoka Freddie S.1,Chiew Francis H. S.1

Affiliation:

1. CSIRO Land and Water, Canberra, Australian Capital Territory, Australia

Abstract

Abstract The future rainfall series used to drive hydrological models in most climate change impact studies is informed by global climate models (GCMs). This paper compares future runoff projections in ∼11 000 0.25° grid cells across Australia from a daily rainfall–runoff model driven with future daily rainfall series obtained using three simple scaling methods, informed by 14 GCMs. In the constant scaling and daily scaling methods, the historical daily rainfall series is scaled by the relative difference between GCM simulations for the future and historical climates. The constant scaling method scales all the daily rainfall by the same factor, and the daily scaling method takes into account changes in the daily rainfall distribution by scaling the different daily rainfall amounts differently. In the daily translation method, the GCM future daily rainfall series is translated to a 0.25° gridcell rainfall series using the relationship established between the historical GCM-scale rainfall and 0.25° gridcell rainfall data. The daily scaling and daily translation methods generally give higher extreme and annual runoff than the constant scaling method because they take into account the increase in extreme daily rainfall (which generates significant runoff) simulated by the large majority of the GCMs. However, the difference between the mean annual runoff simulated with future daily rainfall series obtained using the constant versus daily scaling methods is generally less than 5%, which is relatively smaller than the range of runoff results from the different GCMs of 30%–40%.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3