Spatiotemporal Variability of Precipitation, Modeled Soil Moisture, and Vegetation Greenness in North America within the Recent Observational Record

Author:

Castro Christopher L.1,Beltrán-Przekurat Adriana B.2,Pielke Roger A.2

Affiliation:

1. Department of Atmospheric Sciences, The University of Arizona, Tucson, Arizona

2. Cooperative Institute for Research in Environmental Sciences, Department of Atmospheric and Oceanic Sciences, University of Colorado, Boulder, Colorado

Abstract

Abstract Dominant spatiotemporal patterns of precipitation, modeled soil moisture, and vegetation are determined in North America within the recent observational record (late twentieth century onward). These data are from a gridded U.S.–Mexico precipitation product, retrospective long-term integrations of two land surface models, and satellite-derived vegetation greenness. The analysis procedure uses three statistical techniques. First, all the variables are normalized according to the standardized precipitation index procedure. Second, dominant patterns of spatiotemporal variability are determined using multitaper method–singular value decomposition for interannual and longer time scales. The dominant spatiotemporal patterns of precipitation generally conform to known and distinct Pacific SST forcing in the cool and warm seasons. Two specific time scales in precipitation at 9 and 6–7 yr correspond to significant variability in soil moisture and vegetation, respectively. The 9-yr signal is related to precipitation in late fall to early winter, whereas the 6–7-yr signal is related to earlysummer precipitation. Canonical correlation analysis is finally used to confirm that strong covariability between land surface variables and precipitation exists at these specific times of the year. Both signals are strongest in the central and western United States and are consistent with prior global modeling and paleoclimate studies that have investigated drought in North America.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3