Estimation of the Impact of Sampling Errors in the VOS Observations on Air–Sea Fluxes. Part II: Impact on Trends and Interannual Variability

Author:

Gulev Sergey1,Jung Thomas2,Ruprecht Eberhard3

Affiliation:

1. P. P. Shirshov Institute of Oceanology, Moscow, Russia, and IFM-GEOMAR, Kiel, Germany

2. ECMWF, Reading, United Kingdom

3. IFM-GEOMAR, Kiel, Germany

Abstract

Abstract Using the same approach as in Part I, here it is shown how sampling problems in voluntary observing ship (VOS) data affect conclusions about interannual variations and secular changes of surface heat fluxes. The largest uncertainties in linear trend estimates are found in relatively poorly sampled regions like the high-latitude North Atlantic and North Pacific as well as the Southern Ocean, where trends can locally show opposite signs when computed from the regularly sampled and undersampled data. Spatial patterns of shorter-period interannual variability, quantified through the EOF analysis, also show remarkable differences between the regularly sampled and undersampled flux datasets in the Labrador Sea and northwest Pacific. In particular, it is shown that in the Labrador Sea region, in contrast to regularly sampled NCEP–NCAR reanalysis fluxes, VOS-like sampled NCEP–NCAR reanalysis fluxes neither show significant interannual variability nor significant trends. These regions, although quite localized covering small parts of the globe, play a crucial role for the coupled atmosphere–ocean system. In the Labrador Sea, for instance, interannual and decadal-scale changes of the surface net heat fluxes are known to affect oceanic convection and, thus, the meridional overturning circulation of the Atlantic Ocean. From a discussion of current atmospheric data assimilation systems it is argued that in poorly sampled regions reanalysis products are superior to VOS-based products for studying interannual and interdecadal variations of atmosphere–ocean interaction. In well-sampled regions, on the other hand, conclusions about surface heat flux variations are relatively insensitive to the choice of the flux products used (VOS versus reanalysis data). The results are confirmed for two different datasets, that is, ECMWF 40-yr Re-Analysis (ERA-40) data and seasonal integrations with a recent version of the ECMWF model in which no actual data were assimilated.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3