Atmosphere and Ocean Modeling on Grids of Variable Resolution—A 2D Case Study

Author:

Düben Peter D.1,Korn Peter2

Affiliation:

1. Max Planck Institute for Meteorology and IMPRS-ESM, Hamburg, Germany

2. Max Planck Institute for Meteorology, Hamburg, Germany

Abstract

Abstract Grids of variable resolution are of great interest in atmosphere and ocean modeling as they offer a route to higher local resolution and improved solutions. On the other hand there are changes in grid resolution considered to be problematic because of the errors they create between coarse and fine parts of a grid due to reflection and scattering of waves. On complex multidimensional domains these errors resist theoretical investigation and demand numerical experiments. With a low-order hybrid continuous/discontinuous finite-element model of the inviscid and viscous shallow-water equations a numerical study is carried out that investigates the influence of grid refinement on critical features such as wave propagation, turbulent cascades, and the representation of geostrophic balance. The refinement technique the authors use is static h refinement, where additional grid cells are inserted in regions of interest known a priori. The numerical tests include planar and spherical geometry as well as flows with boundaries and are chosen to address the impact of abrupt changes in resolution or the influence of the shape of the transition zone. For the specific finite-element model under investigation, the simulations suggest that grid refinement does not deteriorate geostrophic balance and turbulent cascades and the shape of mesh transition zones appears to be less important than expected. However, the results show that the static local refinement is able to reduce the local error, but not necessarily the global error and convergence properties with resolution are changed. The relatively simple tests already illustrate that grid refinement has to go along with a simultaneous change of the parameterization schemes.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference30 articles.

1. Icosahedral discretization of the two-sphere;Baumgardner;SIAM J. Numer. Anal.,1985

2. Analysis of discrete shallow-water models on geodesic Delaunay grids with C-type staggering;Bonaventura;Mon. Wea. Rev.,2005

3. Practical evaluation of five partly discontinuous finite element pairs for the non-conservative shallow water equations;Comblen;Int. J. Numer. Methods Fluids,2010

4. Numerical wave propagation for the triangular P1DG-P2 finite element pair;Cotter;J. Comput. Phys.,2011

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3