An OSSE-Based Evaluation of Hybrid Variational–Ensemble Data Assimilation for the NCEP GFS. Part I: System Description and 3D-Hybrid Results

Author:

Kleist Daryl T.1,Ide Kayo2

Affiliation:

1. Department of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, Maryland

2. Department of Atmospheric and Oceanic Science, and Earth System Science Interdisciplinary Center, and Institute for Physical Science and Technology, and Center for Scientific Computation and Mathematical Modeling, University of Maryland, College Park, College Park, Maryland

Abstract

Abstract An observing system simulation experiment (OSSE) has been carried out to evaluate the impact of a hybrid ensemble–variational data assimilation algorithm for use with the National Centers for Environmental Prediction (NCEP) global data assimilation system. An OSSE provides a controlled framework for evaluating analysis and forecast errors since a truth is known. In this case, the nature run was generated and provided by the European Centre for Medium-Range Weather Forecasts as part of the international Joint OSSE project. The assimilation and forecast impact studies are carried out using a model that is different than the nature run model, thereby accounting for model error and avoiding issues with the so-called identical-twin experiments. It is found that the quality of analysis is improved substantially when going from three-dimensional variational data assimilation (3DVar) to a hybrid 3D ensemble–variational (EnVar)-based algorithm. This is especially true in terms of the analysis error reduction for wind and moisture, most notably in the tropics. Forecast impact experiments show that the hybrid-initialized forecasts improve upon the 3DVar-based forecasts for most metrics, lead times, variables, and levels. An additional experiment that utilizes 3DEnVar (100% ensemble) demonstrates that the use of a 25% static error covariance contribution does not alter the quality of hybrid analysis when utilizing the tangent-linear normal mode constraint on the total hybrid increment.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 140 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3