Synoptic Flow Patterns and Large-Scale Characteristics Associated with Rapidly Intensifying Tropical Cyclones in the South China Sea

Author:

Chen Xiaomin1,Wang Yuqing2,Zhao Kun3

Affiliation:

1. Key Laboratory for Mesoscale Severe Weather, Ministry of Education, and School of Atmospheric Sciences, Nanjing University, Nanjing, China, and International Pacific Research Center, and Department of Meteorology, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Honolulu, Hawaii

2. International Pacific Research Center, and Department of Meteorology, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Honolulu, Hawaii

3. Key Laboratory for Mesoscale Severe Weather, Ministry of Education, and School of Atmospheric Sciences, Nanjing University, Nanjing, China

Abstract

Abstract The typical synoptic flow patterns and environmental factors that favor the rapid intensification (RI) of tropical cyclones (TCs) in the South China Sea (SCS) have been identified based on all TCs formed in the SCS between 1981 and 2011. The quantity RI is defined as the 24-h increase in maximum sustained surface wind speed by 15 m s−1 as in previous studies, which is close to the 95th percentile of 24-h intensity change of all SCS samples excluding those after landfall. There are 4.9% (2.3%) of tropical depressions (tropical storms) that experienced RI. No typhoons satisfied the RI threshold. Six low-level synoptic flow patterns favoring RI have been identified based on 18 RI cases. In the monsoon season very few TCs experience RI due to large vertical wind shear (VWS). Most RI cases occurred in the postmonsoon season when the midlatitude troughs often penetrated into the SCS whereas the southwesterly monsoon flow is still strong in the southern SCS. Compared with those of non-RI cases, the mean initial conditions of RI cases include weak VWS and relatively strong forcing from midlatitude troughs. Several criteria of significant environmental factors for RI are statistically identified based on all TC samples. It is found that 16 non-RI TCs fitted in the RI flow patterns but only two of them satisfy all the criteria, suggesting that a combination of the synoptic flow pattern and the environmental factors can be used to predict RI in the SCS. In addition, two RI cases involving TC–trough interaction are analyzed.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3