A Study of Two Propagating Heavy-Rainfall Episodes near Taiwan during SoWMEX/TiMREX IOP-8 in June 2008. Part I: Synoptic Evolution, Episode Propagation, and Model Control Simulation

Author:

Wang Chung-Chieh1,Chieh-Sheng Hsu Jason1,Tai-Jen Chen George2,Lee Dong-In3

Affiliation:

1. Department of Earth Sciences, National Taiwan Normal University, Taipei, Taiwan

2. Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan

3. Department of Environmental Atmospheric Sciences, Pukyong National University, Busan, South Korea

Abstract

Abstract This paper is the first of a two-part study to investigate two rain-producing episodes in the longitude–time (Hovmöller) space upstream from Taiwan during the eighth intensive observing period (IOP-8, 12–17 June 2008) of the Southwest Monsoon Experiment/Terrain-influenced Monsoon Rainfall Experiment (SoWMEX/TiMREX), with a goal to better understand the mechanism and controlling factors for their organization and propagation. Both in a prefrontal environment, the first episode moved eastward and the second was a rare westward-moving event, and each caused heavy rainfall in Taiwan, on 14 and 16 June, respectively. In Part II, the roles played by synoptic conditions and terrain effects are further examined through sensitivity tests. With the aid from a successful simulation with a grid spacing of 2.5 km, the structure and organization of convection embedded in the two episodes are shown to be different. With stronger low-level vertical wind shear in its environment, the first episode consisted of well-organized squall-line-type convective systems and propagated eastward mainly through cold-pool dynamics. However, the convection of the second episode was scattered and less organized with weaker vertical shear, and individual cells traveled with background flow toward the north-northeast. Throughout the 6-day case period, the southwesterly low-level jet (LLJ) is found to have much control over the general region of convection, and thus dictates the overall rainfall pattern in the Hovmöller space at the regional scale. The rapid development of the mei-yu front and LLJ over southeastern China during 16–17 June, to the west of the previous location of the jet, is found to result in the westward movement of the second episode.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3