Initiation and Organizational Modes of an Extreme-Rain-Producing Mesoscale Convective System along a Mei-Yu Front in East China

Author:

Luo Yali1,Gong Yu2,Zhang Da-Lin3

Affiliation:

1. State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, China

2. National Meteorological Center, Chinese Meteorological Administration, Beijing, China

3. State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, China, and Department of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, Maryland

Abstract

Abstract The initiation and organization of a quasi-linear extreme-rain-producing mesoscale convective system (MCS) along a mei-yu front in east China during the midnight-to-morning hours of 8 July 2007 are studied using high-resolution surface observations and radar reflectivity, and a 24-h convection-permitting simulation with the nested grid spacing of 1.11 km. Both the observations and the simulation reveal that the quasi-linear MCS forms through continuous convective initiation and organization into west–east-oriented rainbands with life spans of about 4–10 h, and their subsequent southeastward propagation. Results show that the early convective initiation at the western end of the MCS results from moist southwesterly monsoonal flows ascending cold domes left behind by convective activity that develops during the previous afternoon-to-evening hours, suggesting a possible linkage between the early morning and late afternoon peaks of the mei-yu rainfall. Two scales of convective organization are found during the MCS's development: one is the east- to northeastward “echo training” of convective cells along individual rainbands, and the other is the southeastward “band training” of the rainbands along the quasi-linear MCS. The two organizational modes are similar within the context of “training” of convective elements, but they differ in their spatial scales and movement directions. It is concluded that the repeated convective backbuilding and the subsequent echo training along the same path account for the extreme rainfall production in the present case, whereas the band training is responsible for the longevity of the rainbands and the formation of the quasi-linear MCS.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3