Global Sea Surface Temperature Forecasts Using a Pairwise Dynamic Combination Approach

Author:

Chowdhury Shahadat1,Sharma Ashish1

Affiliation:

1. School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales, Australia

Abstract

Abstract This paper dynamically combined three multivariate forecasts where spatially and temporally variant combination weights are estimated using a nearest-neighbor approach. The case study presented combines forecasts from three climate models for the period 1958–2001. The variables of interest here are the monthly global sea surface temperature anomalies (SSTA) at a 5° × 5° latitude–longitude grid, predicted 3 months in advance. The forecast from the static weight combination is used as the base case for comparison. The forecasted sea surface temperature using the dynamic combination algorithm offers consistent improvements over the static combination approach for all seasons. This improved skill is achieved over at least 93% of the global grid cells, in four 10-yr independent validation segments. Dynamically combined forecasts reduce the mean-square error of the SSTA by at least 25% for 72% of the global grid cells when compared against the best-performing single forecast among the three climate models considered.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference29 articles.

1. Multimodel ensembling in seasonal climate forecasting at IRI;Barnston;Bull. Amer. Meteor. Soc.,2003

2. Global Ocean Surface Temperature Atlas “GOSTA.”;Bottomley,1990

3. Linear models;Chambers,1992

4. Mitigating predictive uncertainty in hydroclimatic forecasts: Impact of uncertain inputs and model structural form;Chowdhury,2009

5. Long-range Niño-3.4 predictions using pairwise dynamic combinations of multiple models;Chowdhury;J. Climate,2009

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3