The Role of Regional SST Warming Variations in the Drying of Meso-America in Future Climate Projections*

Author:

Rauscher Sara A.1,Kucharski Fred2,Enfield David B.3

Affiliation:

1. T-3 Fluid Dynamics, Los Alamos National Laboratory, Los Alamos, New Mexico

2. Earth System Physics Section, Abdus Salam International Centre for Theoretical Physics, Trieste, Italy

3. Cooperative Institute for Marine and Atmospheric Studies, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

Abstract

Abstract This paper addresses several hypotheses designed to explain why AOGCM simulations of future climate in the third phase of the Coupled Model Intercomparison Project (CMIP3) feature an intensified reduction of precipitation over the Meso-America (MA) region. While the drying is consistent with an amplification of the subtropical high pressure cells and an equatorward contraction of convective regions due to the “upped ante” for convection in a warmer atmosphere, the physical mechanisms behind the intensity and robustness of the MA drying signal have not been fully explored. Regional variations in sea surface temperature (SST) warming may play a role. First, SSTs over the tropical North Atlantic (TNA) do not warm as much as the surrounding ocean. The troposphere senses a TNA that is cooler than the tropical Pacific, potentially exciting a Gill-type response, increasing the strength of the North Atlantic subtropical high. Second, the warm ENSO-like state simulated in the eastern tropical Pacific could decrease precipitation over MA, as warm ENSO events are associated with drying over MA. The authors use the International Centre for Theoretical Physics (ICTP) AGCM to investigate the effects of these regional SST warming variations on the projected drying over MA. First, the change of SSTs [Special Report on Emissions Scenarios (SRES) A1B’s Twentieth-Century Climate in Coupled Model (A1B-20C)] in the ensemble average of the CMIP3 models is applied to determine if the ICTP AGCM can replicate the future drying. Then the effects of 1) removing the reduced warming over the TNA, 2) removing the warm ENSO-event-like pattern in the eastern tropical Pacific, and 3) applying uniform SST warming throughout the tropics are tested. The ICTP AGCM can reproduce the general pattern and amount of precipitation over MA. Simulations in which the CMIP3 A1B-20C ensemble-average SSTs are added to climatological SSTs show drying of more than 20% over the MA region, similar to the CMIP3 ensemble average. Replacing the relatively cooler SSTs over the TNA excites a Gill response consistent with an off-equatorial heating anomaly, showing that the TNA relative cooling is responsible for about 16% (31%) of the drying in late spring (early summer). The warm ENSO-like SST pattern over the eastern Pacific also affects precipitation over the MA region, with changes of 19% and 31% in March–June (MMJ) and June–August (JJA), respectively. This work highlights the importance of understanding even robust signals in the CMIP3 future scenario simulations, and should aid in the design and analysis of future climate change studies over the region.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference65 articles.

1. A climatic feature of the tropical Americas: The trade wind easterly jet;Amador;Top. Meteor. Oceanogr.,1998

2. A multi-level spectral model. I. Formulation and hemispheric integrations;Bourke;Mon. Wea. Rev.,1974

3. Internal variability, external forcing and climate trends in multi-decadal AGCM ensembles;Bracco;Climate Dyn.,2004

4. Internal and forced modes of variability in the Indian Ocean;Bracco;Geophys. Res. Lett.,2005

5. Circumglobal teleconnections, the jet stream waveguide, and the North Atlantic Oscillation;Branstator;J. Climate,2002

Cited by 65 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3