Constraints on Climate Sensitivity from Radiation Patterns in Climate Models

Author:

Huber Markus1,Mahlstein Irina1,Wild Martin1,Fasullo John2,Knutti Reto1

Affiliation:

1. Institute for Atmospheric and Climate Science, Zürich, Switzerland

2. National Center for Atmospheric Research, Boulder, Colorado

Abstract

Abstract The estimated range of climate sensitivity, the equilibrium warming resulting from a doubling of the atmospheric carbon dioxide concentration, has not decreased substantially in past decades. New statistical methods for estimating the climate sensitivity have been proposed and provide a better quantification of relative probabilities of climate sensitivity within the almost canonical range of 2–4.5 K; however, large uncertainties remain, in particular for the upper bound. Simple indices of spatial radiation patterns are used here to establish a relationship between an observable radiative quantity and the equilibrium climate sensitivity. The indices are computed for the Coupled Model Intercomparison Project phase 3 (CMIP3) multimodel dataset and offer a possibility to constrain climate sensitivity by considering radiation patterns in the climate system. High correlations between the indices and climate sensitivity are found, for example, in the cloud radiative forcing of the incoming longwave surface radiation and in the clear-sky component of the incoming surface shortwave flux, the net shortwave surface budget, and the atmospheric shortwave attenuation variable β. The climate sensitivity was estimated from the mean of the indices during the years 1990–99 for the CMIP3 models. The surface radiative flux dataset from the Clouds and the Earth’s Radiant Energy System (CERES) together with its top-of-atmosphere Energy Balanced and Filled equivalent (CERES EBAF) are used as a reference observational dataset, resulting in a best estimate for climate sensitivity of 3.3 K with a likely range of 2.7–4.0 K. A comparison with other satellite and reanalysis datasets show similar likely ranges and best estimates of 1.7–3.8 (3.3 K) [Earth Radiation Budget Experiment (ERBE)], 2.9–3.7 (3.3 K) [International Satellite Cloud Climatology Project radiative surface flux data (ISCCP-FD)], 2.8–4.1 (3.5 K) [NASA’s Modern Era Retrospective-Analysis for Research and Application (MERRA)], 3.0–4.2 (3.6 K) [Japanese 25-yr Reanalysis (JRA-25)], 2.7–3.9 (3.4 K) [European Centre for Medium-Range Weather Forecasts Re-Analysis (ERA-Interim)], 3.0–4.0 (3.5 K) [ERA-40], and 3.1–4.7 (3.6 K) for the NCEP reanalysis. For each individual reference dataset, the results suggest that values for the sensitivity below 1.7 K are not likely to be consistent with observed radiation patterns given the structure of current climate models. For the aggregation of the reference datasets, the climate sensitivity is not likely to be below 2.9 K within the framework of this study, whereas values exceeding 4.5 K cannot be excluded from this analysis. While these ranges cannot be interpreted properly in terms of probability, they are consistent with other estimates of climate sensitivity and reaffirm that the current climatology provides a strong constraint on the lower bound of climate sensitivity even in a set of structurally different models.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference60 articles.

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3