Can Global Warming Strengthen the East Asian Summer Monsoon?

Author:

Li Jianping1,Wu Zhiwei2,Jiang Zhihong3,He Jinhai3

Affiliation:

1. State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

2. Meteorological Research Division, Environment Canada, Dorval, Quebec, Canada

3. Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjing University of Information Science and Technology, Nanjing, China

Abstract

Abstract The Indian summer monsoon (ISM) tends to be intensified in a global-warming scenario, with a weakened linkage with El Niño–Southern Oscillation (ENSO), but how the East Asian summer monsoon (EASM) responds is still an open question. This study investigates the responses of the EASM from observations, theoretical, and modeling perspectives. Observational and theoretical evidence demonstrates that, in contrast to the dramatic global-warming trend within the past 50 years, the regional-mean EASM rainfall is basically dominated by considerable interannual-to-decadal fluctuations, concurrent with enhanced precipitation over the middle and lower reaches of the Yangtze River and over southern Japan and suppressed rainfall amount over the South China and Philippine Seas. From 1958 through 2008, the EASM circulation exhibits a southward shift in its major components (the subtropical westerly jet stream, the western Pacific Ocean subtropical high, the subtropical mei-yu–baiu–changma front, and the tropical monsoon trough). Such a southward shift is very likely or in part due to the meridional asymmetric warming with the most prominent surface warming in the midhigh latitudes (45°–60°N), which induces a weakened meridional thermal contrast over eastern Asia. Another notable feature is the enhanced ENSO–EASM relationship within the past 50 years, which is opposite to the ISM. Fourteen state-of-the-art coupled models from the Intergovernmental Panel on Climate Change show that the EASM strength does not respond with any pronounced trend to the global-warming “A1B” forcing scenario (with an atmospheric CO2 concentration of 720 ppm) but shows interannual-to-decadal variations in the twenty-first century (2000–99). These results indicate that the primary response of the EASM to a warming climate may be a position change instead of an intensity change, and such position change may lead to spatial coexistence of floods and droughts over eastern Asia as has been observed in the past 50 years.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3