Spatial Bayesian Model for Statistical Downscaling of AOGCM to Minimum and Maximum Daily Temperatures

Author:

Fasbender Dominique1,Ouarda Taha B. M. J.1

Affiliation:

1. INRS-ETE, Quebec City, Quebec, Canada

Abstract

Abstract Atmosphere–ocean general circulation models (AOGCMs) are useful for assessing the state of the climate at large scales. Unfortunately, they are not tractable for the finer-scale applications (e.g., hydrometeorological variables). Downscaling methods allow the transfer of large-scale information to finer scales and they are thus relevant for the assessment of finer-scale variables. Among a wide range of downscaling methods, regression-based approaches are commonly used for downscaling AOGCM data because of their low computational requirements. However, downscaled variables are generally reproduced at gauged weather stations only. Results at the gauged stations can then be interpolated a posteriori at ungauged locations with kriging or other methods. In this paper, a spatial Bayesian model is proposed for the downscaling of coarse-scale atmospheric data (i.e., either reanalysis or AOGCM) to minimum and maximum daily temperatures. This approach uses a Bayesian framework for mixing a prior distribution reflecting the monthly spatial dependence of the temperatures with the daily fluctuations induced by the atmospheric predictors. Local characteristics (i.e., altitude and latitude) are also taken into account in the mean of the prior distribution by using a geographical regression model. The posterior distribution thus reflects both monthly local patterns because of the prior and daily larger-scale fluctuations. Finally, the Bayesian approach also allows for the accounting of estimated parameter uncertainty, making it more stable to poor parameter fitting. The method is applied to the southern part of the province of Quebec, Canada. Results show that the downscaled distributions of the temperatures at gauged sites are in sufficient agreement with the validation dataset compared to a classical regression-based method. The proposed model has also the advantage of directly producing temperature maps.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3