Origins and Levels of Seasonal Forecast Skill for Sea Ice in Hudson Bay Using Canonical Correlation Analysis

Author:

Tivy Adrienne1,Howell Stephen E. L.2,Alt Bea3,Yackel John J.4,Carrieres Thomas5

Affiliation:

1. Foothills Climate Analysis Facility, Centre for Alpine and Arctic Climate Research, Department of Geography, University of Calgary, Calgary, Alberta, Canada, and International Arctic Research Center, University of Alaska Fairbanks, Fairbanks, Alaska

2. Climate Processes Section, Atmospheric Science and Technology Directorate, Environment Canada, Toronto, Ontario, Canada

3. Balanced Environmental Associates, Ottawa, Ontario, Canada

4. Foothills Climate Analysis Facility, Centre for Alpine and Arctic Climate Research, Department of Geography, University of Calgary, Calgary, Alberta, Canada

5. Canadian Ice Service, Meteorological Service of Canada, Environment Canada, Ottawa, Ontario, Canada

Abstract

Abstract Canonical correlation analysis (CCA) is used to estimate the levels and sources of seasonal forecast skill for July ice concentration in Hudson Bay over the 1971–2005 period. July is an important transition month in the seasonal cycle of sea ice in Hudson Bay because it is the month when the sea ice clears enough to allow the first passage of ships to the Port of Churchill. Sea surface temperature (quasi global, North Atlantic, and North Pacific), Northern Hemisphere 500-mb geopotential height (z500), sea level pressure (SLP), and regional surface air temperature (SAT) are tested as predictors at 3-, 6-, and 9-month lead times. The model with the highest skill has three predictors—fall North Atlantic SST, fall z500, and fall SAT—and significant tercile forecast skill covering 61% of the Hudson Bay region. The highest skill for a single-predictor model is from fall North Atlantic SST (6-month lead). Fall SST explains 69% of the variance in July ice concentration in Hudson Bay and a possible atmospheric link that accounts for the lagged relationship is presented. CCA diagnostics suggest that changes in the subpolar North Atlantic gyre and the Atlantic multidecadal oscillation (AMO), reflected in sea surface temperature, precedes a deepening/weakening of the winter upper-air ridge northwest of Hudson Bay. Changes in the height of the ridge are reflected in the strength of the winter northwesterly winds over Hudson Bay that have a direct impact on the winter ice thickness distribution; anomalies in winter ice severity are later reflected in the pattern and timing of spring breakup. July ice concentration in Hudson Bay has declined by approximately 20% per decade between 1979 and 2007, and the hypothesized link to the AMO may help explain this significant loss of ice.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3