Improved Methods for PCA-Based Reconstructions: Case Study Using the Steig et al. (2009) Antarctic Temperature Reconstruction

Author:

O’Donnell Ryan1,Lewis Nicholas2,McIntyre Steve3,Condon Jeff4

Affiliation:

1. Mattawan, Michigan

2. Bath, United Kingdom

3. Toronto, Ontario, Canada

4. Chicago, Illinois

Abstract

Abstract A detailed analysis is presented of a recently published Antarctic temperature reconstruction that combines satellite and ground information using a regularized expectation–maximization algorithm. Though the general reconstruction concept has merit, it is susceptible to spurious results for both temperature trends and patterns. The deficiencies include the following: (i) improper calibration of satellite data; (ii) improper determination of spatial structure during infilling; and (iii) suboptimal determination of regularization parameters, particularly with respect to satellite principal component retention. This study proposes two methods to resolve these issues. One utilizes temporal relationships between the satellite and ground data; the other combines ground data with only the spatial component of the satellite data. Both improved methods yield similar results that disagree with the previous method in several aspects. Rather than finding warming concentrated in West Antarctica, the authors find warming over the period of 1957–2006 to be concentrated in the peninsula (≈0.35°C decade−1). This study also shows average trends for the continent, East Antarctica, and West Antarctica that are half or less than that found using the unimproved method. Notably, though the authors find warming in West Antarctica to be smaller in magnitude and find that statistically significant warming extends at least as far as Marie Byrd Land. This study also finds differences in the seasonal patterns of temperature change, with winter and fall showing the largest differences and spring and summer showing negligible differences outside of the peninsula.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3