Evaluations of the Thermodynamic Phases of Clouds in a Cloud-System-Resolving Model Using CALIPSO and a Satellite Simulator over the Southern Ocean

Author:

Roh Woosub1,Satoh Masaki1,Hashino Tempei2,Okamoto Hajime3,Seiki Tatsuya4

Affiliation:

1. Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, Japan

2. Kochi University of Technology, Kami, Japan

3. Kyushu University, Fukuoka, Japan

4. Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan

Abstract

AbstractA new evaluation method for the thermodynamic phases of clouds in cloud-system-resolving models is presented usingCALIPSOobservations and a satellite simulator. This method determines the thermodynamic phases using the depolarization ratio and a cloud extinction proxy. For the evaluation, we introduced empirical parameterization of the depolarization ratio of ice and water clouds using temperatures of a reanalysis dataset and total attenuated backscatters ofCALIPSO. We evaluated the mixed-phase clouds simulated in a cloud-system-resolving model over the Southern Ocean using single-moment and double-moment bulk cloud microphysics schemes, referred to as NSW6 and NDW6, respectively. The NDW6 simulations reproduce supercooled water clouds near the boundary layer that are consistent with the observations. Conversely, the NSW6 simulations failed to reproduce such supercooled water clouds. Consistencies between the cloud classes diagnosed by the evaluation method and the simulated hydrometeor categories were examined. NDW6 shows diagnosed water and ice classes that are consistent with the simulated categories, whereas the ice category simulated with NSW6 is diagnosed as liquid water by the present method due to the large extinction from the ice cloud layers. Additional analyses indicated that ice clouds with a small effective radius and large ice water content in NSW6 lead to erroneous values for the fraction of the diagnosed liquid water. It is shown that the uncertainty in the cloud classification method depends on the details of the cloud microphysics schemes. It is important to understand the causes of inconsistencies in order to properly understand the cloud classification applied to model evaluations as well as retrievals.

Funder

JSPS KAKENHI

JAXA

Ministry of Education, Culture, Sports, Science and Technology

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3