A New Parameterization of the Accretion of Cloud Water by Snow and Its Evaluation through Simulations of Mesoscale Convective Systems

Author:

Jin Han-Gyul1,Baik Jong-Jin1

Affiliation:

1. School of Earth and Environmental Sciences, Seoul National University, Seoul, South Korea

Abstract

Abstract A new parameterization of the accretion of cloud water by snow for use in bulk microphysics schemes is derived as an analytic approximation of the stochastic collection equation (SCE), where the theoretical collision efficiency for individual snowflake–cloud droplet pairs is applied. The snowflake shape is assumed to be nonspherical with the mass–size and area–size relations suggested by an observational study. The performance of the new parameterization is compared to two parameterizations based on the continuous collection equation, one with the spherical shape assumption for snowflakes (SPH-CON), and the other with the nonspherical shape assumption employed in the new parameterization (NSP-CON). In box model simulations, only the new parameterization reproduces a relatively slow decrease in the cloud droplet number concentration, which is predicted by the direct SCE solver. This results from considering the preferential collection of cloud droplets depending on their sizes in the new parameterization based on the SCE. In idealized squall-line simulations using a cloud-resolving model, the new parameterization predicts heavier precipitation in the convective core region compared to SPH-CON, and a broader area of the trailing stratiform rain compared to NSP-CON due to the horizontal advection of greater amount of snow in the upper layer. In the real-case simulations of a line-shaped mesoscale convective system that passed over the central Korean Peninsula, the new parameterization predicts higher frequencies of light precipitation rates and lower frequencies of heavy precipitation rates. The relatively large amount of upper-level snow in the new parameterization contributes to a broadening of the area with significant snow water path.

Funder

National Research Foundation of Korea

Korea Meteorological Administration

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3