Effects of Entrainment and Mixing on the Wegener–Bergeron–Findeisen Process

Author:

Hoffmann Fabian1ORCID

Affiliation:

1. Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, and Chemical Sciences Laboratory, NOAA/Earth System Research Laboratories, Boulder, Colorado

Abstract

Abstract The growth of ice crystals at the expense of water droplets, the Wegener–Bergeron–Findeisen (WBF) process, is of major importance for the production of precipitation in mixed-phase clouds. The effects of entrainment and mixing on WBF, however, are not well understood, and small-scale inhomogeneities in the thermodynamic and hydrometeor fields are typically neglected in current models. By applying the linear eddy model, a millimeter-resolution representation of turbulent deformation and molecular diffusion, we investigate these small-scale effects on WBF. While we show that entrainment is accelerating WBF by contributing to the evaporation of liquid droplets, entrainment may also cause aforementioned inhomogeneities, particularly regions filled with exclusively ice or liquid hydrometeors, which tend to decelerate WBF if the ice crystal concentration exceeds 100 L−1. At lower ice crystal concentrations, even weak turbulence can homogenize hydrometeor and thermodynamic fields sufficiently fast so as to not affect WBF. Independent of the ice crystal concentration, it is shown that a fully resolved entrainment and mixing process may delay the nucleation of entrained aerosols to ice crystals, thereby delaying the uptake of water vapor by the ice phase, further slowing down WBF. All in all, this study indicates that, under specific conditions, small-scale inhomogeneities associated with entrainment and mixing counteract the accelerated WBF in entraining clouds. However, further research is required to assess the importance of the newly discovered processes more broadly in fully coupled, evolving mixed-phase cloud systems.

Funder

CIRES Visiting Fellowship

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3